导数——放缩法在高考中的应用
导数——放缩法在高考中的应用
Katorly知识点
${\color{Magenta}e^x\geq x+1} \quad当x=0时取“=”$
${\color{Magenta}x-1\geq\ln x} \quad当x=1时取“=”$
$近年来\ln x<\frac{1}{2}(x-x\frac{1}{x})<x-1\textit{(新增)}$
$证明:e.g.\quad e^x-x-1\geq 0\quad证其最小值大于等于0即可.$
例题
例1
$\color{Cyan}若x,y是实数,e^{x+y+2}-3\leq \ln(y-2x+1)+3x,则2x+y=\underline{\phantom{answer}}.$
$\textit{x+y}\leq e^{x+y+2}-3\leq \ln (y-2x+1)+3x\leq \textit{x+y}$
$\therefore取“=”$
$\therefore\begin{cases}
x+y+2=0\\
y-2x+1=1
\end{cases}\Rightarrow\begin{cases}
x=-\frac{2}{3}\\
y=-\frac{4}{3}
\end{cases}$
$\therefore 2x+y=-\frac{8}{3}.$
例2
$\color{Cyan}实数x,y满足2x=\ln {(x+y-1)}+\ln {(x-y-1)}+4,则2020x^2+2019y^2=\underline{\phantom{answer}}.$
$\ln {(x+y-1)}\leq x+y-2$
$\ln {(x-y-y)}\leq x-y-2$
$\therefore 2x=\ln {(x+y-1)}+\ln {(x-y-1)}+4\leq 2x$
$\because取“=”$
$\therefore\begin{cases}
x+y-1=1\\
x-y-1=1
\end{cases}\Rightarrow\begin{cases}
x=2\\
y=0
\end{cases}$
$\therefore 2020x^2+2019y^2=8080.$
例3
$\color{Cyan}设m为整数,且对于任意正整数n,(1+\frac{1}{2})(1+\frac{1}{2^2})(1+\frac{1}{2^3})\dotsm(1+\frac{1}{2^n})<m,求m最小值.$
$\color{Magenta}\textit{(用$\ln x\leq x-1$来构造,因为有乘法)}$
$\begin{aligned}
\ln x\leq x-1
&\Rightarrow \ln {(x+1)}\leq x\\
&\Rightarrow \ln {(x+\frac{1}{2^k})}\leq\frac{1}{2^k}
\end{aligned}$
$\therefore\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\dotsm+\frac{1}{2^n} = 1-(\frac{1}{2})^n<1$
$\begin{aligned}
&\therefore取对\ln (\frac{1}{2}+1)+\ln (\frac{1}{2^2}+1)+\dotsm+\ln (\frac{1}{2^n}+1)\\
&=\ln (1+\frac{1}{2})(1+\frac{1}{2^2})(1+\frac{1}{2^n})\\
&<e<3
\end{aligned}$
$\therefore m>3.$
例4
$\color{Cyan}函数f(x)=e^x-\ln {(x+m)},求证:当m\leq 2时,f(x)>0.$
$\color{Magenta}\xcancel{\begin{aligned}
&e^x-\ln {(x+m)}>0\qquad \ln {(x+m)}\leq x+m-1\\
&e^x-\ln {(x+m)}>x+1-\ln {(x+m)}\\
&>x+1-x-m+1>2-m\geq 0
\end{aligned}}$
$\color{Magenta}\textit{$e^x$和$\ln {(x+m)}$两者取等条件不一样$\quad\therefore$不可同时用}$
$e^x\geq x+1\geq\ln {(x+2)}\geq\ln {(x+m)}$
$\because等号不同时成立$
$\therefore e^x>\ln{(x+m)}\Rightarrow e^x-\ln{(x+m)}>0.$